Fechar

@MastersThesis{Vargas:2014:UnLaMa,
               author = "Vargas, Maycol Marcondes",
                title = "Effect of transient gas-phase on ferrofluid droplet vaporization: 
                         under large magnetic power regime",
               school = "Instituto Nacional de Pesquisas Espaciais (INPE)",
                 year = "2014",
              address = "S{\~a}o Jos{\'e} dos Campos",
                month = "2014-02-26",
             keywords = "droplet vaporization, magnetic heating, ferrofluid, transient 
                         regime, vaporiza{\c{c}}{\~a}o de gota, aquecimento 
                         magn{\'e}tico, ferrofluido, regime transiente.",
             abstract = "In this work the influence of transient processes of the gas phase 
                         on the vaporization of isolated ferrofluid droplet with spherical 
                         symmetry under the influence of an external alternating magnetic 
                         field is investigated. Dispersed magnetic nanoparticles inside the 
                         droplet act as a heat source. The nanoparticle dipole reacts to 
                         the alternating magnetic field rotating the nanoparticle. The 
                         friction between the rotating nanoparticle and the surrounding 
                         liquid produces heat (viscous dissipation). Brownian motion of the 
                         liquid molecules is responsible for the nanoparticle dipoles 
                         misalignment when the magnetic field amplitude is null. Therefore, 
                         in each cycle of the magnetic field the nanoparticle rotates, 
                         generating heating in the core of the liquid. Applying this 
                         process on droplets is possible to reduce the droplet heating 
                         time. The conditions addressed in this problem leads to the 
                         magnetic power to be much larger than the thermal power, provided 
                         by the heat flux from the gas phase. The characteristic of this 
                         problem is a thermal boundary layer established close to the 
                         droplet surface in the liquid side. The magneto relaxation source 
                         is found to be dependent on initial conditions. In addition, 
                         because of the dependency of the magneto relaxation heating on 
                         temperature, a local maximum of temperature is found inside the 
                         thermal boundary layer. In the current model it is also observed 
                         the increasing of the droplet vaporization with pressure. RESUMO: 
                         Neste trabalho {\'e} estudado a influ{\^e}ncia dos processos 
                         transientes da fase gasosa na vaporiza{\c{c}}{\~a}o de uma gota 
                         isolada de ferrofluido com simetria esf{\'e}rica e sob 
                         influ{\^e}ncia de um campo magn{\'e}tico externo alternado. 
                         Nanopart{\'{\i}}culas magn{\'e}ticas homogeneamente dispersas 
                         no fluido agem como uma fonte de calor. Os dipolos das 
                         nanopart{\'{\i}}culas respondem ao campo magn{\'e}tico 
                         alternado fazendo a nanopart{\'{\i}}cula rotacionar. O atrito 
                         entre a nanopart{\'{\i}}cula e o l{\'{\i}}quido nos arredores 
                         da part{\'{\i}}cula produz calor (dissipa{\c{c}}{\~a}o 
                         viscosa). O movimento Browniano das mol{\'e}culas do 
                         l{\'{\i}}quido {\'e} respons{\'a}vel pelo desalinhamento dos 
                         dipolos na aus{\^e}ncia do campo magn{\'e}tico. Desse modo em 
                         cada ciclo do campo magn{\'e}tico as nanopart{\'{\i}}culas 
                         rotacionam, gerando calor dentro da gota. Aplicando esse processo 
                         em gotas {\'e} possivel reduzir o tempo de aquecimento. As 
                         condi{\c{c}}{\~o}es assumidas neste problema resultam em uma 
                         pot{\^e}ncia magn{\'e}tica muito maior do que a pot{\^e}ncia 
                         t{\'e}rmica, dada pelo fluxo de calor da fase gasosa. A 
                         caracter{\'{\i}}stica desse problema consiste em uma camada 
                         limite t{\'e}rmica estabelecida bem pr{\'o}ximo {\`a} 
                         superf{\'{\i}}cie no lado l{\'{\i}}quido da gota. O fonte 
                         magn{\'e}tica {\'e} dependente das condi{\c{c}}{\~o}es 
                         iniciais do problema. Al{\'e}m disso, devido {\`a} 
                         depend{\^e}ncia da fonte magn{\'e}tica com a temperatura, uma 
                         temperatura m{\'a}xima local dentro da camada limite t{\'e}rmica 
                         {\'e} encontrada. O modelo atual observa o aumento da taxa de 
                         vaporiza{\c{c}}{\~a}o da gota com a press{\~a}o.",
            committee = "Fachini Filho, Fernando (presidente/orientador) and 
                         Mendon{\c{c}}a, Marcio Teixeira de and Dourado, Wladimyr Mattos 
                         da Costa and Cardoso, Elaine Maria and Cristaldo, Cesar Flaubiano 
                         da Cruz",
         englishtitle = "Efeito da etapa transiente da fase gasosa na 
                         vaporiza{\c{c}}{\~a}o de uma gota de ferrofluido: grande 
                         pot{\^e}ncia magn{\'e}tica",
             language = "en",
                pages = "89",
                  ibi = "8JMKD3MGP5W34M/3FKEKF5",
                  url = "http://urlib.net/ibi/8JMKD3MGP5W34M/3FKEKF5",
           targetfile = "publicacao.pdf",
        urlaccessdate = "27 abr. 2024"
}


Fechar